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Abstract The radiation of a cylindrical-surface-wave mode which propagates towards the mouth of a semi-
infinite cylindrical waveguide which supports surface waves is considered. This semi-infinite cylindrical wave-
guide is symmetrically located inside an infinite cylindrical waveguide whose surfaces are lined with an absorbent
material. The whole system constitutes a new bifurcated cylindrical-waveguide boundary-value problem that has
application in acoustics and electromagnetism. The mathematical model results in a scalar Wiener–Hopf problem
which can be rigorously solved to give a closed-form solution.
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1 Introduction

The bifurcated waveguide problem under consideration here is shown in Fig. 1. A surface-wave mode is assumed to
propagate towards the mouth of a lined semi-infinite cylindrical waveguide. The boundary-value problem which we
are going to solve in this paper is of a fairly general nature. The boundary conditions on all the cylindrical surfaces
are of the third kind, that is, Robin type. There is a number of practical physical situations where this waveguide
system with these boundary conditions can arise. For example, by using various polarizations of the surface wave,
the present scalar problem arises as a model for electromagnetic communication in subterranean tunnels. Indeed,
the lossy-impedance condition on the inner wall of the larger cylinder models real tunnel conditions quite well [1]
and, in this context, the semi-infinite waveguide would be viewed as a wave-launcher [2]. The present problem can
also be used to model the propagation of waves in fibre-optic waveguides with the surface-impedance boundary
conditions modelling a metal–dielectric cladding of a fibre-optic waveguide [3,4]. In acoustics, the design of exhaust
and ventilation systems that reduce unwanted noise use absorbent linings along cylindrical ducts. The attenuation of
unwanted sound in infinite closed ducts by means of acoustically absorbing liners has been theoretically analyzed
extensively in the literature; see [5,6] and the review articles [7,8]. More recently, Büyükaksoy and Demir have
published a series of articles that bear on this subject area; in particular, in [9] they solved a related problem “by
the modified Wiener–Hopf techique”. They considered the same cylindrical geometry but with different absorbent
cylindrical surfaces. The solution of this quite general problem by the modified Wiener–Hopf technique resulted in
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Fig. 1 Geometry of the
cylindrical duct system

an infinite system of algebraic equations that was solved numerically to give an approximate solution. The present
work could be used as a bench-mark for a test on their approximate numerical solutions.

Here, to be specific, we shall couch the present paper in an acoustic context. Thus, an acoustic surface wave
propagates towards the mouth of the semi-infinite duct. The boundary conditions on the internal surfaces of the
semi-infinite waveguide are such that this guide supports surface waves. The infinite cylindrical duct in which the
semi-infinite guide is situated is such that the walls are acoustically absorbent. Thus, this particular problem can
be considered as a system where the surface wave emitted from the semi-infinite region is unwanted noise and the
absorbent lining is used to reduce the noise down the duct far away from the source of noise. Alternatively the
semi-infinite guide can be considered as a measuring probe that is placed inside a larger lined duct to measure
the reflection coefficient of the surface wave reflected back into the semi-infinite duct. The reflection coefficient
will depend on the impedance of the infinite duct lining. Such a device has practical applications in large industrial
chimneys where soot lines the chimney surface and therefore changes the surface impedance [10]. The reflection
coefficient will give an indication of how clogged up the chimney is and whether it needs to be cleaned. A related
situation arises in blocked-up arteries of the human body, and the present problem could be used to build an instru-
ment to indicate the degree of clogging of the blood vessels. Clearly, the artery walls being modelled by impedance
boundary conditions and being cylindrically rigid is a simplification of the real-life situation. Even so, it offers a
first prototype model for a more refined model.

In Sect. 2 we shall formulate the mathematical problem that we intend to solve. In Sect. 3 we shall solve the
problem formulated in Sect. 2 by means of the Wiener–Hopf technique. The solution will be expressed as complex
contour integrals. In Sect. 4 we shall analytically convert these integrals into infinite series of modes which propa-
gate in the waveguide region. Graphs will be given for the reflection coefficient which is a useful way of measuring
power and also the effect of the lining impedance of the infinite duct wall. At the end of this work we shall present
some appendices that derive analytical details and calculations that are required in the main body of the paper.

2 Formulation of the boundary-value problem

We shall consider the acoustic diffraction of a wave mode propagating towards the open end of a semi-infinite
cylindrical tube whose internal surface is capable of supporting a surface-wave mode. This semi-infinite tube is
surrounded by an infinite cylindrical casing which is lined with an acoustically absorbing, or wave bearing material.
The cylinder casing and its lining are located at r = b,−∞ < z < ∞, and the semi-infinite cylinder, which is
assumed to be infinitely thin, is located at r = a,−∞ < z < 0, in cylindrical polar coordinates (r, θ, z) as shown
in Fig. 1. The sound source emanates cylindrically symmetric modes, from z = −∞, along the inside(or outside)
of the semi-infinite tube towards the open end at z = 0. Therefore, the source field may be represented as a sum of
symmetric wave modes that are independent of θ . Such a situation arises, for example, when the source field is a
point (or ring) source located at (0, 0, z0) (or (c, θ0, z0)), a < c < b, 0 ≤ θ0 < 2π ), z0 � 0. From the geometrical
symmetry of the problem in relation to the incident field, the total acoustic field everywhere will be independent of
θ . We shall therefore introduce a scalar potential functionψ(r, z, t)which defines the acoustic pressure and velocity
for an ideal compressible irrotational fluid by p = −ρ0

∂ψ
∂t

, and u = ∇ψ , respectively, where ρ0 is the density of the
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undisturbed medium. The incident sound field is assumed to have a time-harmonic variation and therefore the field
everywhere can be represented by ψ(r, z; t) = Re[e−iωtφ(r, z)]. We shall not show the time variation e−iωt in the
rest of the paper and only work with the complex potential function φ(r, z). For a surface which absorbs acoustic
energy it is necessary to describe mathematically how the acoustic energy is transmitted into the boundary surface.
In many practical situations the so-called locally reacting surface proves to be a good model for porous absorbing
surfaces; see [11] and [12, pp. 151–179]. The normal acoustic impedance Zn of the surface of such an absorbent
lining is defined by the ratio Zn = p/(u · n) where the unit normal n is directed into the absorbent lining. Thus, in
terms of the complex velocity potential φ, the boundary condition on the absorbent surface is given by

∂φ

∂n
− ik

ζ
φ = 0, (1)

where ζ(= Zn/(ρ0c)) is the complex specific impedance, with positive real part, c is the speed of sound, and
k = ω/c is the wave number. Wave-bearing corrugated surfaces which do not absorb energy can be described by a
similar type of boundary condition; see [13]. In this situation the complex specific surface impedance ζ = χ−iξ has
a zero resistive component χ = 0, and a purely negative reactance ξ < 0. The quantity ξ depends on the geometry
of the corrugated surface. Thus, the boundary-value problem satisfied by φ(x, z) is given by:

(∇2 + k2)φ(x, z) = 0, (0 < r < a) ∪ (a < r < b); (2)

∂φ

∂r
(a+, z)+ k

ξ
φ(a+, z) = ∂φ

∂r
(a−, z)+ k

ξ
φ(a−, z) = 0, (z < 0); (3)

∂φ

∂r
(a+, z)+ k

ξ
φ(a+, z) = ∂φ

∂r
(a−, z)+ k

ξ
φ(a−, z), (−∞ < z < ∞); (4)

(
∂

∂r
− ik

ζ

)
φ(b−, z) = 0, (−∞ < z < ∞); (5)

φ(a−, z) = φ(a+, z), (z > 0), (6)

where it is assumed b > a, and Re ζ ≥ 0 and ξ < 0.1 To the above conditions we add the incident field and those
conditions at infinity which are relevant to the nature of the propagating modes that the various duct regions can
sustain. It is not difficult to show, by using the method of separation of variables [14] that the appropriate modal
expansions in the various duct regions at infinity are stated below.

For z → −∞, 0 ≤ r ≤ a:

φ(r, z) = I0(µ0r)e
iχ0z + RI0(µ0r)e

−iχ0z +
∞∑
n=1

RnJ0(αnr)e
−iχnz, (7)

where the first and second term correspond to the dominant incident and reflected surface wave, respectively; here
µ0 is the positive real solution of the equation

µ0I1(µ0a)+ k

ξ
I0(µ0a) = 0, ξ < 0, (8)

andχ0 =
√
k2 + µ2

0 with 0 < k < k0, where k0 is the smallest positive root of the equation ξJ ′
0(k0a)+J0(k0a) = 0.

The remaining terms correspond to the reflected modes where αn = √
k2 − χ2

n , (n = 1, 2, 3, . . .), are the real
positive roots of the equation

αnJ
′
0(αna)+ k

ξ
J0(αna) = 0, (9)

1 The condition Re ζ ≥ 0 corresponds to a situation where the internal surface of the infinite waveguide has an absorbent lining. The
condition ξ < 0 corresponds to the situation where the internal surface of the semi-infinite waveguide has a lining which supports
surface waves.
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with 0 < Imχ1 < Imχ2 < Imχ3 < . . ., and Re χn ≥ 0, χn = i
√
α2
n − k2, and k < α1 < α2 < α3 < .... The

proofs that only one surface-wave mode χ0 can propagate for 0 < k < k0, and that the Eq. (9) has an infinite
number of real roots is given in the Appendix A.

For z → ∞, 0 ≤ r ≤ b:

φ(r, z) =
∞∑
n=1

TnJ0(βnr)e
iξnz, (10)

where βn = √
k2 − ξ2

n (n = 1, 2, 3, . . .) are the roots of the equation

βnJ1(βnb)+ ik

ζ
J0(βnb) = 0. (11)

It is shown in the Appendix B that 0 < Imξ1 < Imξ2 < Imξ3 < · · · , 0 < Reξn, and Re βnImβn < 0.
For z → −∞, a ≤ r ≤ b

φ(r, z) = ∑∞
n=1 T n

[
(δnH

(1)′
0 (δna)+ k

ξ
H
(1)
0 (δna))J0(δnr)− (δnJ

′
0(δna)+ k

ξ
J0(δna))H

(1)
0 (δnr)

]
e−iηnz, (12)

where δn = √
k2 − ηn(n = 1, 2, 3, . . .), are the roots of the equation

(δnH
(1)′
0 (δna)+ k

ξ
H
(1)
0 (δna))(δnJ

′
0(δnb)− ik

ζ
J0(δnb))− (δnJ

′
0(δna)

+ k

ξ
J0(δna))(δnH

(1)
0 ′(δnb)− ik

ζ
H
(1)
0 (δnb)) = 0, (13)

with 0 < Imη1 < Imη2 < Imη3..., and 0 < Reηn, ReηnImηn > 0; see the Appendices A and B.
Finally, we require φ to have finite energy density on z = 0, r = a, and thus φ must be finite and |∇φ| must

have an integrable singularity. This results in the following edge-field behavior at r = a, z → 0:

φ(a, z) = O(1),

∣∣∣∣∂φ(a, z)∂r

∣∣∣∣ = O(z−
1
2 ), z → 0. (14)

The satisfaction of the above conditions (2) to (14) will result in a unique solution to the boundary-value problem
formulated.

3 Solution of the boundary-value problem

A suitable representation for the total field φ(r, z) in all space −∞ < z < ∞, r < b which satisfies (2) is given by

φ(r, z) = I0(µ0r)e
iχ0z +

∫ ∞

−∞
eiνzA(ν)J0(κr)dν, (r < a); (15)

φ(r, z) =
∫ ∞

−∞
eiνz[B(ν)J0(κr)+ C(ν)H

(1)
0 (κr)]dν, (a < r < b), (16)

where κ = √
k2 − ν2. The branch cuts are from k to i∞ and from −k to −i∞. The cut Riemann sheet on which

we shall work is defined by 0 ≤ arg κ ≤ π . The contour of integration is indented below the point −k and above
the point k.2 The quantities A(ν), B(ν),and C(ν) are as yet unknown; however, the edge condition (14) requires
that as |ν| → ∞

A(ν) = O(|ν|−1e−a|ν|), ea|ν|√
π
B(ν)+ √

πe−a|ν|C(ν) = O(|ν|−1); (17)

2 A posteriori, branch-cut singularities should not arise for physical reasons. We are dealing with a closed-duct system and only pole
singularities can occur in the integrands, giving rise to modes of propagation.
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see Appendix C. We shall see later that the integrands of (15) and (16) only have pole singularities that produce
exponential wave modes propagating down the ducts. These wave modes, in the various duct regions, must be of
the form given in the mode conditions at infinity as defined by the expressions (7), (10), and (12). It is shown in the
Appendices A and B that none of these poles lie on a suitably indented contour of integration in (15) and (16). To
simplify the future resulting equations, we shall use the following formulaic abbreviations:

J (α, β, ν) = κJ ′
0(κα)+ kβJ0(κα), (18)

H(α, β, ν) = κH
(1)′
0 (κα)+ kβH

(1)
0 (κα). (19)

Thus, to determine A(ν), B(ν) and C(ν), we substitute (15) and (16) in the remaining boundary conditions (2) to
(6), giving the following expressions:∫ ∞

−∞
eiνz[B(ν)J (a, 1/ξ, ν)+ C(ν)H(a, 1/ξ, ν)]dν =

∫ ∞

−∞
eiνzA(ν)J (a, 1/ξ, ν)dν = 0, (20)

for (z < 0);∫ ∞

−∞
eiνz[B(ν)J (a, 1/ξ, ν)+ C(ν)H(a, 1/ξ, ν)]dν =

∫ ∞

−∞
eiνzA(ν)J (a, 1/ξ, ν)dν, (21)

for (−∞ < z < ∞);∫ ∞

−∞
eiνz[B(ν)J (b,−i/ζ, ν)+ C(ν)H(b,−i/ζ, ν)]dν = 0, (22)

for (−∞ < z < ∞);∫ ∞

−∞
eiνz

[
I0(µ0a)

2πi(ν − χ0�)
+ (A(ν)− B(ν))J0(κa)− C(ν)H

(1)
0 (κa)

]
dν = 0, (23)

for (z > 0). The smile on χ0 denotes that the contour of integration is indented below the point ν = χ0. A solution
of the above system of equations can be written as

A(ν)J (a, 1/ξ, ν) = B(ν)J (a, 1/ξ, ν)+ C(ν)H(a, 1/ξ, ν) = �−(ν), (24)

B(ν)J (b,−i/ζ, ν)+ C(ν)H(b,−i/ζ, ν) = 0, (25)

I0(µ0a)

2π i(ν − χ0)
+ (A(ν)− B(ν))J0(κa)− C(ν)H

(1)
0 (κa) = �+(ν), (26)

where �+(ν)(�−(ν)) is holomorphic in Imν ≥ 0(Imν ≤ 0, ν 
= χ0), respectively. By eliminating A(ν), B(ν),
and C(ν) from the Eqs. (24)–(26), we get the scalar Wiener–Hopf equation:

I0(µ0a)

2π i(ν − χ0)
+K(ν)�−(ν) = �+(ν), (27)

where

K(ν) =
(

2

iπa

)
J (b,−i/ζ, ν)

J (a, 1/ξ, ν)D(ν)
, (28)

with

D(ν) = J (a, 1/ξ, ν)H(b,−i/ζ, ν)− J (b,−i/ζ, ν)H(a, 1/ξ, ν). (29)

In order to be able to solve the Wiener–Hopf equation (27) we shall require the following asymptotic growth
estimates as ν → ±∞.

κ = i|ν|, J0(κa) = O(|ν|− 1
2 ea|ν|), J ′

0(κa) = O(|ν|− 1
2 ea|ν|),
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H
(1)
0 (κa) = O(|ν|− 1

2 e−a|ν|), H
(1)′
0 (κa) = O(|ν|− 1

2 e−a|ν|),

J (b,−i/ζ, ν) = O(|ν| 1
2 eb|ν|), J (a, 1/ξ, ν) = O(|ν| 1

2 ea|ν|),

H(b,−i/ζ, ν) = O(|ν| 1
2 e−b|ν|), H(a, 1/ξ, ν) = O(|ν| 1

2 e−a|ν|),

K(ν) = O(|ν|−1), D(ν) = O(|ν|e(b−a)|ν|).

These asymptotic estimates together with (17) and (24)–(26) give, as ν → ±∞,

�−(ν) = O(|ν|− 1
2 ), for Imν < 0, (30)

�+(ν) = O(|ν|−1), for Imν > 0. (31)

By carrying out the factorization

K(ν) = K+(ν)K−(ν), (32)

where the subscripts ± denote the regions where the factors are holomorphic, we can rewrite Eq. (27) in the form

I0(µ0a)

2π i(ν − χ0)
K−1+ (χ0)+K−(ν)�−(ν) = �+(ν)K−1+ (ν)− I0(µ0a)

2π i(ν − χ0)
(K−1− (ν)−K−1− (χ0)), (33)

which is valid along the real indented line Imν = 0. The detailed factorization of K(ν), defined by (28) and (32),
is carried out in Appendix D. In particular, it is shown there that, as |ν| → ∞,

K±(ν) = O(|ν|− 1
2 ), for Imν ≷ 0. (34)

By using the asymptotic expressions (31), (32) and (34), we can show that the left-hand side of the (33) is holo-
morphic and asymptotic to O(|ν|−1) as |ν| → ∞, in Imν ≤ 0. Similarly, the right-hand side is holomorphic and

asymptotic to O(|ν|− 1
2 ) as |ν| → ∞, in Imν ≥ 0. Hence, by an application of Liouville’s theorem, the function

which is the analytic continuation, from the real indented line, of both sides of (33) into the entire complex ν-plane
is the constant zero. Hence from (33) we have

�−(ν) = −I0(µ0a)

2π i(ν − χ0)K+(χ0)K−(ν)
; (35)

which on substitution in (24) and (25) gives,

A(ν) = −I0(µ0a)

2π i(ν − χ0)K+(χ0)K−(ν)J (a, 1/ξ, ν)
, (36)

B(ν) = −I0(µ0a)H(b,−i/ζ, ν)
2π i(ν − χ0)K+(χ0)K−(ν)D(ν)

, (37)
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C(ν) = I0(µ0a)J (b,−i/ζ, ν)
2π i(ν − χ0)K+(χ0)K−(ν)D(ν)

. (38)

Thus, the acoustic field is given everywhere in the duct system by substituting (36)–(38) in (15) and (16), yielding

φ(r, z) = I0(µ0r)e
iχ0z − I0(µ0a)

2π iK+(χ0)

∫ ∞

−∞
eiνzJ0(κr)

(ν − χ0�)K−(ν)J (a, 1/ξ, ν)
dν, (39)

for (r < a);

φ(r, z) = I0(µ0a)

2π iK+(χ0)

∫ ∞

−∞
eiνz[J (b,−i/ζ, ν)H(1)

0 (κr)−H(b,−i/ζ, ν)J0(κr)]
(ν − χ0�)K−(ν)D(ν)

dν, (40)

for (a < r < b), where the contour of integration is indented below ν = χ0.

4 Modal field representation

We can convert the integral representations for the acoustic field, given by (39) and (40), into a series of propagating
wave modes. This is achieved by closing the path of integration by a suitable contour and applying Cauchy’s residue
theorem. We can close the path of integration in (39) or/and (40) by an infinite semi-circle in either Im ≥ 0 or

Im ≤ 0 (depending on the sign of z), since both integrands are bounded by O(eiνzν− 3
2 ) as |ν| → ∞ in these

regions. We also note that the integrands are even functions of κ and hence there are no branch-point singularities
in the entire ν-plane. Thus, an application of Jordan’s lemma enables us to close the contour of integration in (39)
and (40) by an infinite semi-circle in either Imν ≥ 0 or Imν ≥ 0 (depending on the sign of z ) without affecting
the value of the integral. The value of the appropriate integral can then be found as an infinite series of wave modes
by summing the residue contributions from the poles of the integrand enclosed by the contour.

4.1 Field in r < a, z < 0

Enclosing the contour of integration in (39) by an infinite semi-circle in Imν ≤ 0 and summing residues from
the only simple poles of the integrand enclosed, that is, the simple zeros of J (a, 1/ξ, ν) = 0, which are given by
ν = χn(n = 0, 1, 2, . . .), we obtain

φ(r, z) = I0(µ0r)e
iχ0z − I0(µ0a)

K+(χ0)

∞∑
m=0

J0(αmr)e−iχmz

(χm + χ0)K+(χm)J ′(a, 1/ξ,−χm), (41)

where J ′(a, 1/ξ,−χm) = ∂J (a,1/ξ,ν)
∂ν

|ν=−χm .

4.2 Field in r < a, z > 0

If we close the contour of integration in (39) by an infinite semi-circle in Imν ≥ 0, with z > 0, by using Jordan’s
lemma, and rewrite the integrand of (39) by means of (29), we obtain the equivalent representation for the expression
(39) as

φ(r, z) = I0(µ0r)e
iχ0z − I0(µ0a)a

4K+(χ0)

∫
C+

eiνzK+(ν)J0(κr)D(ν)

(ν − χ0�)J (b,−i/ζ, ν)
dν, (42)

where C+ is the closed contour, consisting of the contour of integration in (39) and the infinite circular arc
Imν ≥ 0, |ν| = R → ∞. The only poles enclosed by C+ are ν = χ0 and the roots of J (b,−i/ζ, ν) = 0, are
ν = ξm(m = 1, 2, 3, . . .). The residue contribution from the pole ν = χ0 exactly cancels the first term on the
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left-hand side of the equality sign in (42), that is, the incident-wave mode.The contribution from the remaining
poles gives

φ(r, z) = −π iaI0(µ0a)

2K+(χ0)

∞∑
m=1

K+(ξm)J0(βmr)D(ξm)eiξmz

(ξm − χ0)J ′(b,−i/ζ, ξm)
, (43)

where J ′(b,−i/ζ, ξm) = ∂J (b,−i/ζ,ν)
∂ν

|ν=ξm , and where ν = ξm are the zeros of J (b,−i/ζ, ν) = 0, and βm =√
k2 − ξ2

m (m = 1, 2, 3 . . .).

4.3 Field in a < r < b, z < 0

In the expression (40) the functions K−(ν) and (ν − χ0) do not vanish in the region Imν ≤ 0, ν 
= χ0, and thus
the only singularities of the integrand in this region are the poles corresponding to the zeros of D(ν) = 0, that
is, ν = −ηm(m = 1, 2, 3, . . .). If we close the contour of integration in (40) by an infinite semi-circular arc in
Imν ≤ 0, with z < 0, we get, on summing the residue contributions,

φ(r, z) = −I0(µ0a)

K+(χ0)

∞∑
m=1

[J (b,−i/ζ,−ηm)H(1)
0 (δmr)−H(b,−i/ζ,−ηm)J0(δmr)]

(ηm + χ0)K+(ηm)D′(−ηm) e−iηmz, (44)

where D′(−ηm) = ∂D(ν)
∂ν

|ν=−ηm and where δm = √
k2 − η2

m are the zeros of (13).

4.4 Field in a < r < b, z > 0

If we close the contour of integration in (40) by an infinite semi-circular arc in Imν ≥ 0, by applying Jordan’s
lemma, and rewrite the integrand by means of (13), we have the equivalent representation for (40) given by

φ(r, z) = aI0(µ0a)

4K+(χ0)

∫
C+

eiνzJ (a, 1/ξ, ν)K+(ν)
(ν − χ0�)J (b,−i/ζ, ν)

[
J (b,−i/ζ, ν)H(1)

0 (κr)−H(b,−i/ζ, ν)J0(κr)
]

dν, (45)

where C+ is the same closed contour as that in (42). There is no residue contribution from the apparent pole ν = χ0

because this is a removable singularity, cancelled by the zero ν = χ0 of J (a, 1/ξ, ν) = 0. Thus, the only residue
contribution arises from the zeros of J (b,−i/ζ, ν) = 0, that is, ν = ξm(m = 1, 2, 3, . . .). Thus

φ(r, z) = −π iaI0(µ0a)

2K+(χ0)

∞∑
m=1

J (a, 1/ξ, ξm)K+(ξm)H(b,−i/ζ, ξm)J0(βmr)eiξmz

(ξm − χ0)J ′(b,−i/ζ, ξm)
, (46)

which is the same as (43), since D(ξm) = J (a, 1/ξ, ξm)H(b,−i/ζ, ξm), and this is what we would expect from
the physics of the problem.

5 Dominant behavior of field

For the propagation of the dominant surface-wave mode the resultant dominant behavior of the acoustic field in the
various regions is given by

φ(r, z) = I0(µ0r)e
iχ0z + I0(µ0r)e

−iχ0z

(
µ2

0ξ
2

2aχ2
0 (µ

2
0ξ

2 − k2)(K+(χ0))2

)
+O(e−iχ1z), (47)

for (0 ≤ r ≤ a,−∞ < z < 0).
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Fig. 2 Graph of the modulus of the reflection coefficient |R(k)|, as
a function of k for a = 1, b = 1.5, ξ = −1, ζ = 10 + ι; |R(0)| =
1.0, k0 = 3.1128

k
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Fig. 3 Graph of the modulus of the reflection coefficient
|R(k)|, as a function of k for a = 1, b = 1.5, ξ = −1, ζ =
1 + ι; |R(0)| = 1.0, k0 = 3.1128

φ(r, z) = −π iaI0(µ0a)

2bK+(χ0)

β2
1ζ

2K+(ξ1)J (a, 1/ξ, ξ1)H(b,−i/ζ, ξ1)J0(β1r)eiξ1z

ξ1(ξ1 − χ0)(k2 − β2
1ζ

2)J0(β1b)
+O(eiξ2z), (48)

for (0 ≤ r ≤ b, 0 < z < ∞).

φ(r, z) = I0(µ0a)

K+(χ0)

[J (b,−i/ζ,−η1)H
(1)
0 (δ1r)−H(b,−i/ζ,−η1)J0(δ1r)]

(η1 + χ0)K+(η1)D′(−η1)
e−iη1z +O(e−iη2z), (49)

for (a ≤ r ≤ b,−∞ < z < 0), where

D′(ν) = J ′(a, 1/ξ, ν)H(b,−i/ζ, ν)+ J (a, 1/ξ, ν)H ′(b,−i/ζ, ν)

−J ′(b,−i/ζ, ν)H(a, 1/ξ, ν)− J (b,−i/ζ, ν)H ′(a, 1/ξ, ν),

with

J ′(α, β, ν) = αν(κJ0(κa)− kβJ ′
0(κa))/κ,

H ′(α, β, ν) = αν(κH
(1)
0 (κa)− kβH

(1)′
0 (κa))/κ.

From the results (47)–(49) it is an easy matter to obtain the reflection and transmission coefficients for the dom-
inant surface-wave mode propagating in the various regions. In particular, the reflection coefficient R (=incident
surface-wave mode/reflected surface-wave mode) calculated at z = 0 of the incident wave reflected back into the
duct (0 ≤ r ≤ a,−∞ < z < 0), is given by

R(k) = µ2
0ξ

2

2aχ2
0 (µ

2
0ξ

2 − k2)(K+(χ0))2
= −|R|e2ikl . (50)

Hence the modulus of the reflection coefficient is given by using the results of Appendix D by the compact expression

|R(k)| =
∣∣∣πa

2
I0(µ0a)H(a, 1/ξ, χ0)

∣∣∣ e
− 2χ0

π
P

∫ ∞
0

argH(t)

t2−χ2
0

dt
, (51)

where the P in front of the integral sign denotes the principal value of the integral, and H(t) = (t2 − χ2
0 )K(t).

The last expression for|R(k)| is used to produce the graphs shown in Figs. 2 and 3 above. The value of |R| can
be calculated for k = 0 by using the static method often used in acoustic waveguide theory. This assumes that
the fundamental mode propagates in all the duct regions with all duct surfaces being rigid. This calculation gives
R = (a2 − b2)/b2, which for a = 1, b = 1.5 gives R = 0.555556. This does not agree numerically with the above
expression (51) when k is put equal to zero, i.e., |R(0)| = 1.0. However, the limit is not uniform at k = 0. It will be
noticed from the graphs that it is not the same as limk→0|R(k)|. It will also be noticed that the variation of |R(k)|
with ζ is significant enough to detect variations in the impedance lining.
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6 Conclusions

We have solved exactly a new boundary-value problem involving surface-wave propagation in a lined cylindrical
duct. We have been able to numerically evaluate the reflection coefficient for the dominant surface-wave mode,
which is of practical importance in applications, and which involves complicated split functions (that arise from
the Wiener–Hopf technique). This is achieved by numerically evaluating the split functions defined in terms of
suitable Cauchy integrals, rather than the usual method of infinite products; see the references cited in [14]. The
numerical evaluation of the infinite product would normally be a non-trivial matter because of the infinite number
of complex factors. However, the use of Mathematica to numerically evaluate suitable Cauchy integrals very effec-
tively overcomes this problem. The simplistic static approximation used by engineers to calculate reflection and
by association the transmission coefficients does not seem to be accurate enough when dealing with lined ducts.
The significant variation of the reflection coefficient for changes in the impedance lining does offer an instrument
for the detection of a change in the properties of the wall lining. The numerical evaluation of the transmission
coefficients in the other duct regions offers no great analytical difficulties, and can be achieved by the methods
used here in evaluating the reflection coefficient. A full numerical evaluation of the fields in the various regions
of the duct system and their dependance on the large number of physical parameters needs to be considered in a
future publication. Although we have assumed that Reζ > 0 the same method used here can mutatis—mutandis,
be used to solve the situation where Reζ = 0,Imζ 
= 0. In this case we would have a surface-wave transformer,
which would convert a surface-wave generated in z < 0 to a new surface wave in z > 0. In principle, no substantial
difficulties would prevent us from obtaining exact closed-form solutions for other incident-wave-mode situations
with this waveguide system. For example, by reversing the sign of ξ , we could consider the incident-wave mode in
the annular region a < r < b, z < 0. We have also extended the usual Sturm–Liouville method in the appendices
to give useful information on the disposition of the poles and zeros of the complicated special-function eigenvalue
equations that arise from third-type boundary conditions with complex coefficients. We note that by letting ξ → ∞
we obtain the solution to the problem of the radiation from a rigid semi-infinite duct into an infinite lined duct that
was given by [14]. Finally, we intend to deal with the important extensions of this work for the electromagnetic
communication in subsurface tunnels in a future publication.

Appendix A: Normal modes in infinite duct regions

Here we shall derive the permissible normal wave modes ψ(r, z) that can propagate in the various duct regions.
For this purpose we need only consider solutions of the wave equation (∇2 + k2)ψ = 0, in the infinite region
−∞ < z < ∞ for various ranges of r . We shall also assume here that k and ξ are real, whereas ζ can be complex.

A.1 Normal modes in 0 < r < a

Here we have to satisfy the boundary condition:

∂ψ

∂r
+ k

ξ
ψ = 0, (r = a,−∞ < z < ∞).

By separation of variables, it is not difficult to show that the only permissible modes are given by

ψ(r, z) = e±iχnzJ0(αnr), (n = 0, 1, 2, . . .), (52)

where χn = (k2 −α2
n)

1
2 and αn are the real roots of the equation αnJ ′

0(αna)+ (k/ξ)J0(αna) = 0. In the expression
(52), when χn is real and positive, the upper sign represents an outgoing wave as z → ∞, whereas the lower sign
represents an outgoing wave at z → −∞. From the way the square root has been defined,χn can only be real positive
or purely imaginary positive. In the situation where χn is purely positive imaginary, the upper(lower) sign in (52)
represents bounded evanescent waves as z → ∞(−∞). It should be noticed that in carrying out the separation of
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variables the differential equation and boundary conditions for the r variable problem reduces to a classical Sturm–
Liouville boundary problem. We can use this theory to assert that there are an infinite number of real eigenvalues
αn such that there exists a finite lower bound α2

0. That is, we can order the eigenvalues α2
0 < α2

1 < α2
2 < α2

3 < · · ·
where α2

0 may be negative, and hence α0 purely imaginary. The incident fieldψ0(r, z)will be assumed to correspond
to the lowest possible mode propagating as a surface wave towards z → ∞. That is

ψ0(r, z) = J0(α0r)e
iχ0z,

where α0, is the solution of the equation

α0J
′
0(α0a)+ (k/ξ)J0(α0a) = 0,

such that α2
0 is the smallest value of all solutions of the equation αnJ ′

0(αna)+(k/ξ)J0(αna) = 0, (n = 0, 1, 2, 3...).
We now investigate the roots of the equation α0J1(αna) − (k/ξ)J0(αna) = 0, corresponding to the dominant

propagating surface-wave mode in the semi-infinite region 0 ≤ r ≤ a, z < 0. For propagating modes we must have
χn = √

k2 − α2
n > 0, which means that these modes can only occur:

(i) when αn is purely positive imaginary, say αn = iµn,µn > 0, so that χn = √
k2 + µ2

n and the propagating
mode becomes J0(iµnr)eiχnz = I0(µnr)eiχnz. This corresponds to a surface wave whose amplitude decays
from I0(µna) > 1 at r = a to unity at r = 0.

(ii) when αn real with−k < αn < k so that χn = √
k2 − α2

n > 0. We shall only consider the case (i), that is α
purely positive imaginary which corresponds to a surface wave propagating. Thus with α = iµ,µ > 0, the
modal equation (8) can be written as,

µI1(µa)

I0(µa)
= −k

ξ
> 0. (53)

We also have the representation:

µ
I1(µa)

I0(µa)
= 2µ2a

∞∑
n=1

1

(µ2a2 + γ 2
ν,0)

> 0,

for µ > 0. And hence

d

dµ

{
µ
I1(µa)

I0(µa)

}
= 4µa

∞∑
n=1

γν,0)
2

(µ2a2 + γ 2
ν,0)

2
> 0.

Thus µI1(µa)
I0(µa)

is a monotonic increasing function of µ with limµ→0
µI1(µa)
I0(µa)

= 0. Thus Eq. (8) only has one root

for − k
ξ
> 0. We shall now prove that the equation F(z) = AzJ ′

0(z) + BJ0(z) = 0 has an infinite number of real
roots for real finite A and B. For A = B = 0 the result is obvious. If B = 0, A 
= 0 then F(z) = 0 has an infinite
number of real zeros corresponding to the roots of zJ ′

0(z) = 0. Similarly, for B 
= 0, A = 0, F (z) = 0, has an
infinite number of real zeros corresponding to J0(z) = 0. We need now only consider A and B finite. Here we let
0 < j1 < j2 < j3 < j4 < · · · be the zeros of J0(z). Then since J0(z) is positive in the interval (0, j1), negative in
the interval (j1, j2), positive in (j2, j3), etc..., we have

J ′
0(j1) < 0, J ′

0(j2) > 0, J ′
0(j3) < 0, J ′

0(j4) > 0, J ′
0(j5) < 0 · · ·

Hence F(z) alternates in sign at the points j1, j2, j3, j4, . . . and therefore vanishes somewhere between each of
them. To ensure that only the surface wave propagates in the semi-infinite cylinder r < a, z < 0 and no waves of
type (ii) we shall require α2

1 > k2. The appropriate range for k can be found from the smallest positive solution of
the equation αJ ′

0(aα)+ k/ξJ0(aα) = 0 when α = k. Thus we solve ξJ ′
0(ka)+ J0(ka) = 0 for the smallest k > 0.

Let us denote this root by k0. It is not difficult to show that for all ξ < 0, then 2.4048 < k0a < 5.5200.
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A.2 Normal modes in 0 < r < b

Here we have to satisfy the boundary condition:
∂ψ

∂r
− ik

ζ
ψ = 0, (r = b,−∞ < z < ∞).

The only permissible modes of propagation are given by the method of separation of variables as:

ψ(r, z) = e±iξnzJ0(βnr), (n = 1, 2, 3, . . .), (54)

where βn = (k2 − ξ2
n )

1
2 and βn are the complex roots of the equation

βnJ1(βnb)+ (ik/ζ )J0(βnb) = 0, (n = 1, 2, 3, . . .).

It is shown in the Appendix B that for Reζ > 0

Re ξnImξn > 0.

Thus, the upper(lower) sign of the expression (54) represent outgoing bounded waves as z → ∞(−∞).

A.3 Normal modes in a < r < b

Here we have to satisfy the two boundary conditions
∂ψ

∂r
+ k

ξ
ψ = 0, (r = a,−∞ < z < ∞),

∂ψ

∂r
− ik

ζ
ψ = 0, (r = b,−∞ < z < ∞).

By an application of separation of variables, the possible modes are given by assuming a solution of the wave
equation of the form

ψ(r, z) = e±iηnz(AJ0(δnr)+ BH
(1)
0 (δnr)),

where δn = (k2 − η2
n)

1
2 . On substituting the above expression in the boundary condition at r = a we have

A

(
δnJ

′
0(δna)+ k

ξ
J0(δna)

)
+ B

(
H
(1)′
0 (δna)+ k

ξ
H
(1)
0 (δna)

)
= 0.

A solution of the above equation is given by choosing

A =
(
H
(1)′
0 (δna)+ k

ξ
H
(1)
0 (δna)

)
C,

B = −
(
δnJ

′
0(δna)+ k

ξ
J0(δna)

)
C.

Thus

ψ(r, z) = e±iηnzC

[
(H

(1)′
0 (δna)+ k

ξ
H
(1)
0 (δna))J0(δnr)−

(
δnJ

′
0(δna)+ k

ξ
J0(δna)

)
H
(1)
0 (δnr)

]
.

Substituting the latter expression in the boundary condition on r = b will give non-zero values of C, and hence non
trivial solutions of the boundary-value problem if(
δnH

(1)′
0 (δna)+ k

ξ
H
(1)
0 (δna)

)(
δnJ

′
0(δnb)− ik

ζ
J0(δnb)

)
− (δnH

(1)′
0 (δnb)+ k

ξ
H
(1)
0 (δnb))(δnJ

′
0(δna)

− ik

ζ
J0(δna)) = 0.

It is shown in the appendix B that for real ξ and Reζ > 0 then

ImηnRe ηn > 0.

123



Wave propagation in a bifurcated impedance-lined cylindrical waveguide 431

Appendix B: Location of the complex eigenvalues

B.1 Position of complex wavenumbers χn, and ξn

Here we shall extend the Sturm–Liouville method to give information on the nature of the real and imaginary parts
of complex eigenvalues as a function of a complex parameter Z that appears in the third-type boundary conditions
for a cylindrical region. Upon application of the method of separation of variables to the wave equation in cylindrical
coordinates (r, z), (∇2 + k2)ψ = 0, the substitution of ψ(r, z) = φ(r)eiξz results in the radial eigenvalue value
problem:

d

dr
(rφ′(r))− ξ2φ(r)

r
= −k2rφ(r), (0 < r < b);

φ′(b)−ikZφ(b) = 0, limr→0 φ(r) = A, limr→0 φ
′(r) = 0,

where Z is complex, and A is a bounded constant. The boundary condition is appropriate for a bounded solution
that satisfies the absorbing boundary condition on the duct wall. If we conjugate the last two equations, we get the
equivalent eigenvalue equations for the conjugate function φ

d

dr
(rφ

′
(r))− ξ

2
φ(r)

r
= −k2rφ(r),

φ
′
(b)+ ikZφ(b) = 0, limr→0 φ(0) = A, limr→0 φ

′
(r) = 0.

Now multiply the first differential equation problem for φ across by φ and the second differential equation problem
for φ by φ. This gives the set of problems:

φ(r)
d

dr
(rφ′(r))− ξ2|φ(r)|2

r
= −k2r|φ(r)|2;

φ(r)
d

dr
(rφ

′
(r))− ξ

2 |φ(r)|2
r

= −k2r|φ(r)|2.
By subtracting the last two differential equations one from the other, we get

φ(r)
d

dr
(rφ

′
(r))− φ(r)

d

dr
(rφ′(r))− (ξ

2 − ξ2)
|φ(r)|2
r

= 0,

or equivalently

d

dr
[r(φ′

(r)φ(r)− φ(r)φ′(r))] = (ξ
2 − ξ2)

|φ(r)|2
r

.

Integrating both sides of the last expression with respects to r from r → 0+ to r = b, we have

(ξ
2 − ξ2)

∫ b

0+
|φ(r)|2
r

dr = [r(φ′
(r)φ(r)− φ(r)φ′(r))]b0+ .

From the boundary conditions we have

|r(φ′
(r)φ(r)− φ(r)φ′(r))|0+ = 0,

and

|r(φ′
(r)φ(r)− φ(r)φ′(r))|b = ik(Z + Z)|φ(b)|2,

so that

(ξ
2 − ξ2)

∫ b

0+
|φ(r)|2
r

dr = −ik(Z + Z)|φ(b)|2,
or
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−2iRe ξImξ

∫ b

0+
|φ(r)|2
r

dr = −2ikRe Z|φ(b)|2.
For consistency of sign on both sides of the last expression, if Re Z > 0, we must have

ReξImξ > 0.

Note that if Re Z = 0 then ReξImξ = 0 so that the eigenvalues ξ must lie on the real or imaginary axes; this is
the situation for the modes χn that propagate in the cylindrical region 0 < r < a.

B.2 Position of the complex wavenumbers ηn

Here we shall give information on the nature of the real and imaginary parts of complex eigenvalues as a function
of a complex parameter ζ and the real parameter ξ that appear in the third-type boundary conditions in an annular
cylindrical duct region 0 < a < r < b. Upon application of the method of separation of variables to the wave
equation in cylindrical coordinates, the substitution of ψ(r, z) = φ(r)eiηz results in the radial eigenvalue value
problem:

d

dr
(rφ′(r))− η2φ(r)

r
= −k2rφ(r), (a < r < b);

d

dr
φ(a)+ k

ξ
φ(a) = 0,

d

dr
φ(b)− ik

ζ
φ(b) = 0.

By conjugating the above boundary-value problem, we get

d

dr
(rφ

′
(r))− η2φ(r)

r
= −k2rφ(r);

d

dr
φ(a)+ k

ξ
φ(a) = 0,

d

dr
φ(b)+ ik

ζ
φ(b) = 0.

Multiplying across the differential equation for φ by φ, and the differential equation for φ by φ and subtracting the
resulting equations one from the other, we have

φ(r)
d

dr
(rφ

′
(r))− φ(r)

d

dr
(rφ′(r))− (η2 − η2)

|φ(r)|2
r

= 0,

By integrating across this equation from r = a to r = b, we get

(η2 − η2)

∫ b

a

|φ(r)|2
r

dr = [r(φ′
(r)φ(r)− φ(r)φ′(r))]ba.

From the boundary condition on r = a for φ and φ we have on multiplying across by φ and φ, respectively,

φ(a)
d

dr
φ(a)+ k

ξ
|φ(a)|2 = 0, φ(a)

d

dr
φ(a)+ k

ξ
|φ(a)|2 = 0,

from which we get the result

φ(a)
d

dr
φ(a)− φ(a)

d

dr
φ(a) = 0.

Again from the boundary condition on r = b for φ and φ we have on multiplying across by φ and φ, respectively,

φ(b)
d

dr
φ(b)− ik

ζ
|φ(b)|2 = 0, φ(b)

d

dr
φ(b)+ ik

ζ
|φ(b)|2 = 0,

from which we get the result

φ(b)
d

dr
φ(b)− φ(b)

d

dr
φ(b) = ik(ζ + ζ )

|ζ |2 |φ(b)|2.
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By using these results in the last integral expression we get

(η2 − η2)

∫ b

a

|φ(r)|2
r

dr = ik(ζ + ζ )

|ζ |2 |φ(b)|2,
or

ReηImη

∫ b

a

|φ(r)|2
r

dr = k|φ(b)|2
|ζ |2 Re ζ.

If Reζ > 0 then necessarily ReηImη > 0.

Appendix C: Edge condition

On substituting (15) in the expression ∂φ
∂r

+ k
ξ
φ with r = a, we obtain

∂φ

∂r
+ k

ξ
φ =

[
µ0I

′
0(µ0)+ k

ξ
I0(µ0a)

]
eiχ0z +

∫ ∞

−∞
eiνzA(ν)

[
κJ ′

0(κa)+ k

ξ
J0(κa)

]
dν.

Now µ0I
′
0(µ0)+ k

ξ
I0(µ0a) = 0, so that

∂φ

∂r
+ k

ξ
φ =

∫ ∞

−∞
eiνzA(ν)

[
κJ ′

0(κa)+ k

ξ
J0(κa)

]
dν,

but ∂φ
∂r

+ k
ξ
φ = 0 for z < 0 so that

A(ν)

[
κJ ′

0(κa)+ k

ξ
J0(κa)

]
= ϕ−(ν),

where the function ϕ−(ν) is holomorphic in Imν < 0. Thus, from the edge condition (14) as z → 0,∫ ∞

−∞
eiνzϕ−(ν)dν = O(z−

1
2 )+ k

ξ
O(1).

Hence by well-known Fourier asymptotics, as |ν| → ∞, we have ϕ−(ν) = O(|ν|− 1
2 ) so that A(ν)[O(|ν| 1

2 e|ν|a)+
k
ξ
O(|ν|− 1

2 e|ν|a)] = O(ν− 1
2 ), which implies that

A(ν) = O(|ν|−1e−|ν|a), (|ν| → ∞).

By the same method we can also show that

ea|ν|√
π
B(ν)+ √

πe−a|ν|C(ν) = O(|ν|−1), (|ν| → ∞).

Appendix D: Explicit expression for K+(ν) and |K+(χ0)|

The function

K(ν) =
(

2

iπa

)
J (b,−i/ζ, ν)

J (a, 1/ξ, ν)D(ν)
,

is even in ν and κ . We now use the method, given in [15, p 17] to express K(ν) = K+(ν)K−(ν) with

K+(ν) = (K∗(ν))
1
2 e

1
2 g(ν), K−(ν) = (K∗(ν))

1
2 e− 1

2 g(ν),

where K∗(ν) = 1 for Imν 
= 0, and K∗(ν) = K(ν) for Imν = 0; and

g(ν) = 1

2π i

∫ −iε+∞

−iε−∞
logK(t)dt

t − ν
+ 1

2π i

∫ iε+∞

iε−∞
logK(t)dt

t − ν
,

= 1

π i
P

∫ ∞

−∞
logK(t)dt

t − ν
= 1

π i
P

∫ ∞

−∞
(log |K(t)| + iarg(K(t)))dt

t − ν
,
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where the P in front of the integral sign denotes the principal value integral. The above representations for the func-
tions K±(ν) are satisfactory for analytic purposes. For example, see [15, pp. 41–42], the fact that |K(ν)| ∼ 2|ν|−1

implies that |K±(ν)| ∼ √
2|ν|− 1

2 as |ν| → ±∞. However, if zeros or poles of K(ν) lie on the path of integration
the numerical evaluation becomes delicate. Here, for the numerical calculation of the reflection coefficient |R|,
we will need to calculate K+(χ0) and J (a, 1/ξ, χ0) = 0. We shall therefore modify the method to obtain a more
suitable form for the numerical evaluation of K+(χ0). To this end we factor out the poles of K(ν) by defining a
new function H(ν) = (ν2 − χ2

0 )K(ν). Then H(ν) is even in ν and H(t) ∼ 2|t | as t → ±∞. Then H(ν) gives no
problems, so we can write

H+(ν) = (H(ν))
1
2 e

1
2h(ν), H−(ν) = (H(ν))

1
2 e− 1

2h(ν),

h(ν) = 2ν

π i
P

∫ ∞

0

logH(t)dt

t2 − ν2 .

The existence of the above principal-value integral is assured because of the evenness of H(t) and the fact that
logH(t) ∼ log |t | as t → ±∞. Also H(t) 
= 0 along the contour of integration. Thus

K+(ν) = H+(ν)
(ν + χ0)

,

K+(ν) =
√
ν − χ0

ν + χ0
K(ν) e

1
2π i P

∫ ∞
−∞

log[(t2−χ2
0 )K(t)]dt

t−ν .

Hence

|K+(ν)|2 =
∣∣∣∣K(ν)(ν − χ0)

(ν + χ0)
eh(ν)

∣∣∣∣ .
In the limit as ν → χ0, κ → iµ0 it can be shown that

|K+(χ0)|2 =
∣∣∣∣
(

J (b,−i/ζ, χ0)

iπaχ0D(χ0)J ′(a, 1/ξ, χ0)

)
eh(χ0)

∣∣∣∣ .
Since

D(χ0) = −J (b,−i/ζ, χ0)H(a, 1/ξ, χ0),

and

J ′(a, 1/ξ, χ0) = χ0a

µ2
0ξ

2
((µ0a)

2 − k2)I0(µ0a);

we have the final result

|K+(χ0)|2 =
∣∣∣∣∣

µ2
0ξ

2eh(χ0)

πa2χ2
0H(a, 1/ξ, χ0)((µ0a)2 − k2)I0(µ0a)

∣∣∣∣∣ .
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